Тепловой баланс земной поверхности. Тепловой режим поверхности земли и атмосферы Процессы, влияющие на теплообмен атмосферы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Температурный режим подстилающей поверхности

1 . Температурный режим подстилающей поверхности и деятельн о го слоя

температура почва прибор

Подстилающая поверхность, или деятельная поверхность - это поверхность земли (почвы, воды, снега и т.д.), взаимодействующая с атмосферой в процессе тепло- и влагообмена.

Деятельный слой - это слой почвы (включая растительность и снежный покров) или воды, участвующий в теплообмене с окружающей средой, и на глубину которого распространяются суточные и годовые колебания температуры.

Тепловое состояние подстилающей поверхности оказывает значительное влияние на температуру низших слоев воздуха. Это уменьшающееся с высотой влияние может обнаруживаться даже в верхней тропосфере.

Существуют различия в тепловом режиме суши и воды, которые объясняются различием их теплофизических свойств и процессов теплообмена между поверхностью и нижележащими слоями.

В почве коротковолновая солнечная радиация проникает на глубину в десятые доли миллиметра, где она преобразуется в тепло. В нижележащие слои это тепло передается путем молекулярной теплопроводности.

В воде в зависимости от ее прозрачности солнечная радиация проникает на глубины до десятков метров, а перенос тепла в глубинные слои происходит в результате турбулентного перемешивания, термической конвекции, а также испарения.

Турбулентность в водоемах обусловлена прежде всего волнением и течениями. В ночное время суток и в холодное время года развивается термическая конвекция, когда охлажденная на поверхности вода опускается вниз вследствие возросшей плотности и замещается более теплой водой из нижних слоев. При значительном испарении с поверхности моря верхний слой воды становится более соленым и плотным, в результате чего более теплая вода опускается с поверхности в глубину. Поэтому суточные колебания температуры в воде распространяются на глубину до десятков метров, а в почве - менее метра. Годовые колебания температуры воды распространяются на глубину до сотен метров, а в почве - только на 10-20 м; т.е. в почве тепло сосредоточивается в тонком верхнем слое, который нагревается при положительном радиационном балансе и остывает - при отрицательном.

Таким образом, суша быстро нагревается и быстро остывает, а вода медленно нагревается и медленно остывает. Большой тепловой инерции водоемов способствует и то, что удельная теплоемкость воды в 3-4 раза больше, чем почвы. По этим же причинам суточные и годовые колебания температуры на поверхности почвы намного больше, чем на поверхности воды.

Суточный ход температуры поверхности почвы в ясную погоду изображается волнообразной кривой, напоминающей синусоиду. При этом минимум температуры наблюдается вскоре после восхода Солнца, когда радиационный баланс меняет знак с «-» на «+». Максимум температуры приходится на 13-14 ч. Плавность суточного хода температуры может нарушаться наличием облаков, осадков, а также адвективными изменениями.

Разность между максимальной и минимальной температурами за сутки - суточная амплитуда температуры.

Амплитуда суточного хода температуры поверхности почвы зависит от полуденной высоты Солнца, т.е. от широты места и времени года. Летом в ясную погоду в умеренных широтах амплитуда температуры оголенной почвы может достигать 55° С, а в пустынях - 80° и более. В пасмурную погоду амплитуда меньше, чем в ясную. Облака днем задерживают прямую солнечную радиацию, а ночью уменьшают эффективное излучение подстилающей поверхности.

На температуру почвы оказывают влияние растительный и снежный покровы. Растительный покров уменьшает амплитуду суточных колебаний температуры поверхности почвы, так как он препятствует нагреванию ее солнечными лучами днем и защищает от радиационного выхолаживания ночью. При этом понижается и средняя суточная температура поверхности почвы. Снежный покров, обладая малой теплопроводностью, предохраняет почву от интенсивной потери тепла, при этом резко уменьшается суточная амплитуда температуры по сравнению с оголенной почвой.

Разность между максимальной и минимальной средними месячными температурами в течение года называется годовой амплитудой температуры.

Амплитуда температуры подстилающей поверхности в годовом ходе зависит от широты (в тропиках - минимальная) и растет с широтой, что находится в соответствии с изменениями в меридианальном направлении годовой амплитуды месячных сумм солнечной радиации в солярном климате.

Распространение тепла в почве от поверхности вглубь достаточно близко соответствует закону Фурье . Независимо от вида почвы и ее влажности, период колебаний температуры не изменяется с глубиной, т.е. на глубине суточный ход сохраняется с периодом 24 ч, в годовом ходе - в 12 месяцев. При этом амплитуда колебаний температуры с глубиной уменьшается.

На некоторой глубине (около 70 см, разной в зависимости от широты и сезона года) начинается слой с постоянной суточной температурой. Амплитуда годовых колебаний убывает практически до нуля на глубине около 30 м в полярных районах, около 15-20 м - в умеренных широтах. Максимальные и минимальные температуры как в суточном, так и в годовом ходе наступают позднее, чем на поверхности, причем запаздывание прямо пропорционально глубине.

Наглядное представление о распределении температуры почвы по глубине и во времени дает график термоизоплет, который строится по многолетним средним месячным температурам почвы (рис. 1.2). На вертикальной оси графика отложены глубины, а на горизонтальной оси - месяцы. Линии равных температур на графике называются термоизоплетами.

Перемещение по горизонтальной линии позволяет проследить изменение температуры на данной глубине в течение года, а перемещение по вертикальной линии дает представление об изменении температуры по глубине для данного месяца. Из графика видно, что максимальная годовая амплитуда температуры на поверхности с глубиной убывает.

В силу рассмотренных выше различий процессов теплообмена между поверхностью и глубинными слоями водоемов и суши суточные и годовые изменения температуры поверхности водоемов намного меньше, чем у суши. Так, суточная амплитуда изменения температуры поверхности океанов составляет около 0,1-0,2° С в умеренных широтах, и около 0,5 °С в тропиках. При этом минимум температуры отмечается через 2-3 ч после восхода Солнца, а максимум - около 15-16 ч. Годовая амплитуда колебаний температуры поверхности океана значительно больше, чем суточная. В тропиках она порядка 2-3° С, в умеренных широтах около 10° С. Суточные колебания обнаруживаются на глубинах до 15-20 м, а годовые - до 150-400 м.

2 Приборы измерения температуры деятельного слоя

Измерение температуры поверхности почвы, снежного покрова и определение их состояния.

Поверхность почвы и снежного покрова является подстилающей поверхностью, которая непосредственно взаимодействует с атмосферой, поглощает солнечную и атмосферную радиацию и сама излучает в атмосферу, участвует в тепло- и влагообмене и оказывает влияние на термический режим нижележащих слоев почвы.

Для измерения температуры почвы и снежного покрова в сроки наблюдений используется термометр ртутный метеорологический ТМ-3 с пределами шкал от -10 до +85° С; от -25 до +70° С; от -35 до +60° С, с ценой деления шкалы 0,5° С. Погрешность измерения при температурах выше -20° С составляет ±0,5° С, при более низких температурах ±0,7° С. Для определения экстремальных температур между сроками используются термометры ма к симальный ТМ-1 и минимальный ТМ-2 (такие же, как для определения температуры воздуха в психрометрической будке).

Измерения температуры поверхности почвы и снежного покрова производятся на незатененном участке размером 4х6 м в южной части метеорологической площадки. Летом измерения производятся на оголенной, разрыхленной почве, для чего весной участок перекапывается.

Отсчеты по термометрам берут с точностью до 0,1 °С. Состояние почвы и снежного покрова оцениваются визуально. Измерение температуры и наблюдение за состоянием подстилающей поверхности ведутся в течение всего года.

Измерение температуры в верхнем слое почвы

Для измерения температуры в верхнем слое почвы применяют терм о метры ртутные метеорологические коленчатые (Савинова) ТМ-5 (выпускаются комплектом по 4 термометра для измерения температуры почвы на глубинах 5, 10, 15, 20 см). Пределы измерения: от -10 до +50° С, цена деления шкалы 0,5° С, погрешность измерения ±0,5° С. Резервуары цилиндрические. Термометры изогнуты под углом 135° в местах, отстоящих от резервуара на 2-3 см. Это позволяет устанавливать термометры так, чтобы резервуар и часть термометра до изгиба находились в горизонтальном положении под слоем почвы, а часть термометра со шкалой располагалась над почвой.

Капилляр на участке от резервуара до начала шкалы покрыт теплоизоляционной оболочкой, что уменьшает влияние на показания термометра слоя почвы, лежащего над его резервуаром, обеспечивает более точное измерение температуры на глубине, где находится резервуар.

Наблюдения по термометрам Савинова производят на той же площадке, где устанавливаются термометры для измерения температуры поверхности почвы, в единые сроки и только в теплую часть года. При понижении температуры на глубине 5 см ниже 0° С термометры выкапывают, весной устанавливают после схода снежного покрова.

Измерение температуры почвы и грунта на глубинах под естественным покровом

Для измерения температуры почвы применяется термометр ртутный метеорологический почвенно-глубинный ТМ-10 . Его длина 360 мм, диаметр 16 мм, верхний предел шкалы от + 31 до +41° С, а нижний - от -10 до -20° С. Цена деления шкалы 0,2° С, погрешность измерения при плюсовых температурах ±0,2° С, при отрицательных ±0,3° С.

Термометр помещается в винипластовую оправу, снизу заканчивающуюся медным или латунным колпачком, заполненным вокруг резервуара термометра медными опилками. К верхнему концу оправы крепится деревянный стержень, с помощью которого термометр погружается в эбонитовую трубу, находящуюся в грунте на глубине измерения температуры почвы.

Измерения производятся на участке размером 6х8 м с естественным растительным покровом в юго-восточной части метеоплощадки. Вытяжные почвенно-глубинные термометры устанавливаются по линии восток-запад на расстоянии 50 см друг от друга на глубинах 0,2; 0,4; 0,8; 1,2; 1,6; 2,4; 3,2 м в порядке возрастания глубин.

При снежном покрове до 50 см выступающая над поверхностью земли часть трубы составляет 40 см, при большей высоте снежного покрова - 100 см. Установку наружных (эбонитовых) труб производят с помощью бура с тем, чтобы меньше нарушать естественное состояние почвы.

Наблюдения по вытяжным термометрам производят круглый год, ежедневно на глубинах 0,2 и 0,4 м - все 8 сроков (кроме периода, когда высота снега превышает 15 см), на остальных глубинах - 1 раз в сутки.

Измерение температуры воды у поверхности

Для измерения используется ртутный термометр с ценой деления 0,2° С, с пределами шкалы от -5 до +35° С. Термометр помещен в оправу, которая предназначена для сохранения показаний термометра после его поднятия из воды, а также для предохранения от механических повреждений. Оправа состоит из стакана и двух трубок: наружной и внутренней.

Термометр в оправе помещается так, чтобы его шкала располагалась против имеющихся в трубках прорезей, а резервуар термометра - в средней части стакана. Оправа имеет дужку для крепления к тросу. При погружении термометра поворотом наружного чехла прорезь закрывают, а после подъема и для взятия отсчета - открывают. Время выдержки термометра в точке 5-8 мин, заглубление в воду - не более 0,5 м.

Размещено на Allbest.ru

...

Подобные документы

    Основные условия, определяющие структуру и физические свойства снежного покрова. Влияние характера подстилающей снег поверхности и температурного режима внутри снежного покрова. Экстремальные и средние значения высоты снежного покрова Пермского края.

    курсовая работа , добавлен 21.02.2013

    Наблюдение и регистрация суточного хода метеовеличин по данным метеорологической станции. Суточный ход температуры поверхности почвы и воздуха, упругости водяного пара, относительной влажности, атмосферного давления, направления и скорости ветра.

    реферат , добавлен 01.10.2009

    Расчёт средних многолетних ежедневных норм температуры с помощью программы Pnorma2 для разных периодов и построение графиков зависимости норм температуры для дня года. Годовое распределение температур. Пики роста и падения температуры в разное время года.

    курсовая работа , добавлен 05.05.2015

    Определение местного времени в Вологде. Разница между поясным и местным временем в Архангельске. Поясное и декретное время в Чите. Изменение температуры воздуха с высотой. Определение высоты уровней конденсации и сублимации, коэффициента увлажнения.

    контрольная работа , добавлен 03.03.2011

    Необходимость получения климатической информации. Временная изменчивость средней месячной и средней суточной температуры воздуха. Анализ территорий с разными климатическими характеристиками. Температурный режим, ветровой режим и атмосферное давление.

    реферат , добавлен 20.12.2010

    Современные природные условия на земной поверхности, их эволюция и закономерности изменения. Основная причина зональности природы. Физические свойства водной поверхности. Источники атмосферных осадков на суше. Широтная географическая зональность.

    реферат , добавлен 04.06.2010

    Анализ метеорологических величин (температуры воздуха, влажности и атмосферного давления) в нижнем слое атмосферы в г. Хабаровск за июль. Особенности определения влияния метеорологических условий в летний период на распространение ультразвуковых волн.

    курсовая работа , добавлен 17.05.2010

    Основные виды атмосферных осадков и их характеристика. Типы суточного и годового хода осадков. Географическое распределение осадков. Показатели снежного покрова на поверхности Земли. Атмосферное увлажнение как степень снабжения местности влагой.

    презентация , добавлен 28.05.2015

    Климатология как одна из важнейших частей метеорологии и в то же время частная географическая дисциплина. Этапы расчета многолетних норм межсуточных изменений приземной температуры города Санкт-Петербурга, основные способы оценки климатических условий.

    дипломная работа , добавлен 06.02.2014

    Влияние метеорологических элементов на организм человека. Биоклиматические индексы, используемые для оценки погоды теплого и холодного времени года. Индекс патогенности. Измерение ультрафиолетового излучения, показателей температуры, скорости ветра.

Тепловая энергия поступает в нижние слои атмосферы главным образом от подстилающей поверхности. Тепловой режим этих слоев


тесно связан с тепловым режимом земной поверхности, поэтому его изучение является также одной из важных задач метеорологии.

Основными физическими процессами, при которых почва по­лучает или отдает тепло, являются: 1) лучистый теплообмен; 2) турбулентный теплообмен между подстилающей поверхностью и атмосферой; 3) молекулярный теплообмен между поверхностью почвы и нижним неподвижным прилегающим слоем воздуха; 4) те­плообмен между слоями почвы; 5) фазовый теплообмен: затраты тепла на испарение воды, таяние льда и снега на поверхности и в глубине почвы или его выделение при обратных процессах.

Тепловой режим поверхности земли и водоемов определяется их теплофизическими характеристиками. Особое внимание при подготовке следует обратить на вывод и анализ уравнения тепло­проводности почвы (уравнение Фурье). Если почва однородна по вертикали, то ее температура t на глубине z в момент времени т мо­жет быть определена из уравнения Фурье

где а - температуропроводность почвы.

Следствием этого уравнения являются основные законы рас­пространения температурных колебаний в почве:

1. Закон неизменности периода колебаний с глубиной:

T(z) = const (2)

2. Закон уменьшения амплитуды колебаний с глубиной:

(3)

где и - амплитуды на глубинах а - темпера­туропроводность слоя почвы, лежащего между глубинами ;

3. Закон сдвига фазы колебаний с глубиной (закон запаздыва­ния):

(4)

где запаздывание, т.е. разность между моментами наступ­ления одинаковой фазы колебаний (например, максимума) на глубинах и Колебания температуры проникают в почву до глуби­ны z np , определяемой соотношением:

(5)

Кроме того, необходимо обратить внимание на ряд следствий из закона уменьшения амплитуды колебаний с глубиной:

а) глубины, на которых в разных почвах ( ) амплитуды температурных колебаний с одинаковым периодом ( = Т 2) умень­шаются в одинаковое число раз относятся между собой как корни квадратные из температуропроводности этих почв

б) глубины, на которых в одной и той же почве (а = const) ам­плитуды температурных колебаний с разными периодами () уменьшаются в одинаковое число раз =const , относятся между собой как корни квадратные из периодов колебаний

(7)

Необходимо четко усвоить физический смысл и особенности формирования теплового потока в почву.

Поверхностная плотность теплового потока в почве определя­ется по формуле:

где λ - коэффициент теплопроводности почвы вертикаль­ный градиент температуры.

Мгновенные значение Р выражаются в кВт/м с точностью до сотых, суммы Р - в МДж/м 2 (часовые и суточные - с точностью до сотых, месячные - до единиц, годовые - до десятков).

Средняя поверхностная плотность теплового потока через по­верхность почвы за интервал времени т описывается формулой


где С - объемная теплоемкость почвы; интервал; z„ p - глубина проникновения температурных колебаний; ∆t cp - разность средних температур слоя почвы до глубины z np в конце и в начале интервала т. Приведем основные примеры задач по теме «Тепловой режим почвы».

Задача 1. На какой глубине уменьшается в е раз амплитуда су­точных колебаний в почве, имеющей коэффициент температуро­проводности а = 18,84 см 2 /ч?

Решение. Из уравнения (3) следует, что амплитуда суточных ко­лебаний уменьшится в е раз на глубине, соответствующей условию

Задача 2. Найти глубину проникновения суточных колебаний температуры в гранит и в сухой песок, если экстремальные темпе­ратуры поверхности соседних участков с гранитной почвой 34,8 °С и 14,5 °С, а с сухой песчаной почвой 42,3 °С и 7,8 °С. Температуро­проводность гранита а г = 72,0 см 2 /ч, сухого песка а п = 23,0 см 2 /ч.

Решение. Амплитуда температуры на поверхности гранита и песка равна:

Глубина проникновения рассматривается по формуле (5):

В связи с большей температуропроводностью гранита мы по­лучили и большую глубину проникновения суточных колебаний температуры.

Задача 3. Предположив, что температура верхнего слоя почвы изменяется с глубиной линейно, следует вычислить поверхностную плотность теплового потока в сухом песке, если температура его поверхности составляет 23,6 "С, а температура на глубине 5 см рав­на 19,4 °С.

Решение. Температурный градиент почвы в этом случае равен:

Теплопроводность сухого песка λ= 1,0 Вт/м*К. Поток тепла в почву определяем по формуле:

Р = -λ - = 1,0 84,0 10" 3 = 0,08 кВт/м 2

Тепловой режим приземного слоя атмосферы определяется главным образом турбулентным перемешиванием, интенсивность которого зависит от динамических факторов (шероховатости зем­ной поверхности и градиентов скоростей ветра на различных уров­нях, масштаба движения) и термических факторов (неоднородности нагревания различных участков поверхности и вертикального рас­пределения температуры).

Для характеристики интенсивности турбулентного перемеши­вания используется коэффициент турбулентного обмена А и коэф­фициент турбулентности К. Они связаны соотношением

К = А/р (10)

где р - плотность воздуха.

Коэффициент турбулентности К измеряется в м 2 /с, с точностью до сотых долей. Обычно в приземном слое атмосферы используют коэффициент турбулентности К] на высоте г" = 1 м. В пределах при­земного слоя:

где z - высота (м).

Необходимо знать основные методы определения К\.

Задача 1. Вычислить поверхностную плотность вертикально­го теплового потока в приземном слое атмосферы через площадку, на уровне которой плотность воздуха равна нормальной, коэффици­ент турбулентности равен 0,40 м 2 /с, а вертикальный градиент тем­пературы 30,0 °С/100м.


Решение. Вычисляем поверхностную плотность вертикального теплового потока по формулe

L=1.3*1005*0.40*

Изучите факторы, влияющие на тепловой режим приземного слоя атмосферы, а также периодические и непериодические измене­ния температуры свободной атмосферы. Уравнения теплового балан­са земной поверхности и атмосферы описывают закон сохранения энергии, полученной деятельным слоем Земли. Рассмотрите суточ­ный и годовой ход теплового баланса и причины его изменений.

Литература

Раздел Ш, гл. 2, § 1 -8.

Вопросы для самопроверки

1. Какие факторы определяют тепловой режим почвы и водоемов?

2. Каков физический смысл теплофизических характеристик и как они влияют на температурный режим почвы, воздуха, воды?

3. От чего зависят и как зависят амплитуды суточных и годовых колебаний тем­пературы поверхности почвы?

4. Сформулируйте основные законы распределения температурных колебаний в почве?

5. Какие следствия вытекают из основных законов распределения температурных колебаний в почве?

6. Каковы средние глубины проникновения суточных и годовых колебаний тем­пературы в почве и в водоемах?

7. Каково влияние растительного и снежного покрова на тепловой режим почвы?

8. Какие особенности теплового режима водоемов, в отличие от теплового режима почвы?

9. Какие факторы влияют на интенсивность турбулентности в атмосфере?

10. Какие количественные характеристики турбулентности вы знаете?

11. Каковы основные методы определения коэффициента турбулентности, их дос­тоинства и недостатки?

12. Нарисуйте и проанализируйте суточный ход коэффициента турбулентности над поверхностью суши и водоема. В чем причины их различия?

13. Как определяется поверхностная плотность вертикального турбулентного теп­лового потока в приземном слое атмосферы?

Ее величину и изменение на той поверхности, которая непосредственно нагревается солнечными лучами. Нагреваясь, эта поверхность, передает тепло (в длинноволновом диапазоне) как ниже лежащим слоям, так и атмосфере. Саму поверхность называют деятельной поверхностью .

Максимальное значение всех элементов теплового баланса наблюдается в околополуденные часы. Исключение представляет максимум теплообмена в почве, приходящийся на утренние часы. Максимальные амплитуды суточного хода составляющих теплового баланса отмечается летом, минимальные – зимой.

В суточном ходе температуры поверхности, сухой и лишенной растительности, в ясный день максимум наступает после 14 часов, а минимум – около момента восхода Солнца. Нарушать суточный ход температуры может облачность, вызывая смещение максимума и минимума. Большое влияние на ход температуры оказывает влажность и растительность поверхности.

Дневные максимумы температуры поверхности могут составлять +80 о С и более. Суточные колебания достигают 40 о. Величины экстремальных значений и амплитуды температур зависят от широты места, времени года, облачности, тепловых свойств поверхности, ее цвета, шероховатости, характера растительного покрова, ориентировки склонов (экспозиции).

Распространение тепла от деятельной поверхности зависит от состава подстилающего субстрата, и будет определяться его теплоемкостью и теплопроводностью. На поверхности материков подстилающим субстратом являются почвогрунты, в океанах (морях) – вода.

Почвогрунты в общем обладают меньшей чем вода теплоемкостью, и большей теплопроводностью. Поэтому они нагреваются и остывают быстрее, чем вода.

На передачу тепла от слоя к слою затрачивается время, и моменты наступления максимальных и минимальных значений температуры в течение суток запаздывает на каждые 10 см примерно на 3 часа. Чем глубже слой, тем меньше тепла он получает и тем слабее в нем колебания температур. Амплитуда суточных колебаний температур с глубиной уменьшается на каждые 15 см в 2 раза. На глубине в среднем около 1 м суточные колебания температуры почвы «затухают». Слой в котором они прекращаются называется слоем постоянной суточной температуры.

Чем больше период колебаний температур, тем глубже они распространяются. Так в средних широтах слой постоянной годовой температуры находится на глубине 19- 20 м, в высоких – на глубине 25 м, а в тропических широтах, где годовые амплитуды температур невелики – на глубине 5- 10 м. Моменты наступления максимальных и минимальных температур в течение года запаздывают в среднем на 20-30 суток на каждый метр.

Температура в слое постоянной годовой температуры близка к средней годовой температуре воздуха над поверхностью.


B - рад. Баланс, Р- тепло полученное при молек. теплообмене с поверхн. Земли. Len – получ от конденсац. влага.

Тепловой баланс атмосферы:

B - рад. Баланс, Р- затраты тепла на молек. теплообмен с нижними слоями атмосферы. Gn - затраты тепла на молек. теплообмен с нижними слоями грунта Len – затраты тепла на испарение влаги.

Остальное по карте

10)Тепловой режим подстилающей поверхности:

Поверхность которая непосредственно нагревается солнечными лучами и отдаёт тепло нижележащим слоям почвы и воздуху называют деятельный поверхностью.

Температура деятельной поверхности определяется тепловым балансом.

Суточном ходе температур деятельной поверхности максимально поступает 13 часов, минимально температура около момента восхода солнца. максим. и миним. температуры в течении суток могут смещаться из-за облачности, влажности почвы и растительногопокрова.

Значения тепрературы зависит:

  1. От географической широты местности
  2. От времени года
  3. О облачности
  4. От тепловых свойств поверхности
  5. От растительности
  6. От экспозиции склонов

В годовом ходе температур максимально в средних и высоких шротах в северном полушарии наблюдается в июле, а минимальные в январе. В низких широтах годовые амплитуды колебания температур небольшие.

Распределение температуры в глубь зависит от теплоёмкости и её теплопроводности на передачу тепла от слоя к слою требуется время, на каждые 10 метров последовательном нагревании слоёв каждый слой поглощает часть тепла, поэтому чем глубже слой тем меньше тепла он получает, и тем меньше в нём колебание температур в среднем на глубине 1 м. суточные колебания температу преклащаются, годовые колебания в низких широтах заканчиваются на глубине 5-10 м. в средних широтах до 20 м. в высоких 25 м. Слой почвы на которм практически заканчиваются колебания температур наз. Слоем постоянных температур, слой грунта который расположен между деятельной поверхностью и слоем постоянных температурназывают деятельным слоем.

Особенностями распр. Температуры в земле занимался Фурье, он сформулировал законы распространения тепла в почвеили «законы Фурье»:

1))).Чем больше плотность и влажность почвы тем лучше она проводит тепло, тем быстрее быстрее распр в глубину и тем глубже проникает тепло. Температура не зависит от типов почв. Период колебания с глубиной не изменяется

2))). Возрастание глубины в арифметической прогрессии приводит к уменьшению амплитуды температур в прогрессии геометрической.

3)))Сроки наступления максимальных и минимальных температур как в суточном так и в годовом ходе температур затухают с глубиной пропорционально увеличению глубины.

11.Нагревание атмосферы. Адвекция.. Основным источником жизни и многих природных процессов на Земле является лучистая энергия Солнца, или энергия солнечной радиации. Каждую минуту на Землю поступает 2,4 х 10 18 кал энергии Солнца, но это лишь одна двухмиллиардная ее часть. Различают прямую радиацию (непосредственно приходящую от Солнца) и рассеянную (излучаемую частицами воздуха по всем направлениям). Их совокупность, поступающую на горизонтальную поверхность, называют суммарной радиацией. Годовая величина суммарной радиации зависит прежде всего от угла падения на земную поверхность солнечных лучей (который определяется географической широтой), от прозрачности атмосферы и продолжительности освещения. В целом суммарная радиация уменьшается от экваториально-тропических широт к полюсам. Она максимальна (около 850 Дж/см 2 в год, или 200 ккал/см 2 в год) - в тропических пустынях, где прямая солнечная радиация из-за большой высоты Солнца и безоблачного неба наиболее интенсивная.

Солнце в основном нагревает поверхность Земли, от неё нагревается воздух. Тепло передается воздуху путем лучеиспускания и теплопроводности. Нагретый от земной поверхности воздух расширяется и поднимается вверх - так образуются конвективные токи. Способность земной поверхности отражать солнечные лучи называется альбедо: снег отражает до 90 % солнечной радиации, песок - 35 %, а влажная поверхность почвы около 5 %. Та часть суммарной радиации, которая остается после затраты ее на отражение и на тепловое излучение от земной поверхности, называется радиационным балансом (остаточной радиацией). Радиационный баланс закономерно уменьшается от экватора (350 Дж/см 2 в год, или около 80 ккал/см 2 в год) к полюсам, где он близок к нулю. От экватора до субтропиков (сороковые широты) радиационный баланс в течение всего года положительный, в умеренных широтах зимой - отрицательный. Температура воздуха также убывает к полюсам, что хорошо отражают изотермы - линии, соединяющие точки с одинаковой температурой. Изотермы самого теплого месяца являются границами семи тепловых поясов. Жаркий пояс ограничивают изотермы +20 °c до +10 °c простираются два умеренных полюса, от +10 °c до 0 °c - холодные. Две приполярные области мороза оконтуриваются нулевой изотермой - здесь льды и снега практически не тают. До 80 км простирается мезосфера, в которой плотность воздуха в 200 раз меньше, чем у поверхности, а температура вновь понижается с высотой (до -90°). Далее следует состоящая из заряженных частиц ионосфера (здесь возникают полярные сияния), другое свое название - термосфера - эта оболочка получила из-за чрезвычайно высоких температур (до 1500°). Слои выше 450 км некоторые ученые называют экзосферой, отсюда частицы ускользают в космическое пространство.

Атмосфера предохраняет Землю от чрезмерного перегревания днем и охлаждения ночью, защищает все живое на Земле от ультрафиолетовой солнечной радиации, метеоритов, корпускулярных потоков и космических лучей.

Адвекция – перемещение воздуха в горизонтальном направлении и перенос вместе с ним его свойств: температуры, влажности и других. В этом смысле говорят, например, об адвекции тепла и холода. Адвекция холодных и тёплых, сухих и влажных воздушных масс играет важную роль в метеорологических процессах и тем самым влияет на состояние погоды.

Конве́кция - явление переноса теплоты в жидкостях, газах или сыпучих средах потоками самого вещества (неважно, вынужденно или самопроизвольно). Существует т. н. естественная конвекция , которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции, нижние слои вещества нагреваются, становятся легче и всплывают вверх, а верхние слои, наоборот, остывают, становятся тяжелее и погружаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек.

Различают ламинарную и турбулентную конвекцию.

Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на Солнце.

Адиабатический процесс- изменение термодинамического состояния воздуха, протекающее адиабатически (изэнтро-пически), т. е. без обмена теплом между ним и средой (земной поверхностью, космосом, другими массами воздуха).

12. Инверсии температуры в атмосфере, повышение температуры воздуха с высотой вместо обычного для тропосферы её убывания. Инверсии температуры встречаются и у земной поверхности (приземные Инверсии температуры ), и в свободной атмосфере. Приземные Инверсии температуры чаще всего образуются в безветренные ночи (зимой иногда и днём) в результате интенсивного излучения тепла земной поверхностью, что приводит к охлаждению как её самой, так и прилегающего слоя воздуха. Толщина приземных Инверсии температуры составляет десятки - сотни метров. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20 °С и более. Наиболее мощны зимние приземные Инверсии температуры в Восточной Сибири и в Антарктиде.
В тропосфере, выше приземного слоя, Инверсии температуры чаще образуются в антициклонах благодаря оседанию воздуха, сопровождающемуся его сжатием, а следовательно - нагреванием (инверсии оседания). В зонах фронтов атмосферных Инверсии температуры создаются вследствие натекания тёплого воздуха на нижерасположенный холодный. В верхних слоях атмосферы (стратосфере, мезосфере, термосфере) Инверсии температуры возникают из-за сильного поглощения солнечной радиации. Так, на высотах от 20-30 до 50-60 км расположена Инверсии температуры , связанная с поглощением ультрафиолетового излучения Солнца озоном. У основания этого слоя температура равна от - 50 до - 70°C, у его верхней границы она поднимается до - 10 - + 10 °С. Мощная Инверсии температуры , начинающаяся на высоте 80-90 км и простирающаяся на сотни км вверх, также обусловлена поглощением солнечной радиации.
Инверсии температуры являются задерживающими слоями в атмосфере; они препятствуют развитию вертикальных движений воздуха, вследствие чего под ними накапливаются водяной пар, пыль, ядра конденсации. Это благоприятствует образованию слоев дымки, тумана, облаков. Вследствие аномальной рефракции света в Инверсии температуры иногда возникают миражи . В Инверсии температуры образуются также атмосферные волноводы ,благоприятствующие дальнему распространению радиоволн .

13.Типы годового хода температуры.Г одовой ход температуры воздуха в разных географических зонах разнообразен. По величине амплитуды и по времени наступления экстремальных температур выделяют четыре типа годового хода температуры воздуха.

Экваториальный тип. В экваториальной зоне в году наблюдаются два

максимума температуры - после весеннего и осеннего равноденствия, когда

солнце над экватором в полдень находится в зените, и два минимума - после

зимнего и летнего солнцестояния, когда солнце находится на наименьшей

высоте. Амплитуды годового хода здесь малы, что объясняется малым

изменением притока тепла в течение года. Над океанами амплитуды составляют

около 1 °С, а над континентами 5-10 °С.

Тропический тип. В тропических широтах наблюдается простой годовой ход

температуры воздуха с максимумом после летнего и минимумом после зимнего

солнцестояния. Амплитуды годового хода по мере удаления от экватора

увеличиваются зимой. Средняя амплитуда годового хода над материками

составляет 10 - 20° С, над океанами 5 - 10° С.

Тип умеренного пояса. В умеренных широтах также отмечается годовой ход

температуры с максимумом после летнего и минимумом после зимнего

солнцестояния. Над материками северного полушария максимальная

среднемесячная температура наблюдается в июле, над морями и побережьями - в

августе. Годовые амплитуды увеличиваются с широтой. Над океанами и

побережьями они в среднем составляют 10-15° С, а на широте 60° достигают

Полярный тип. Полярные районы характеризуются продолжительной холодной

зимой и сравнительно коротким прохладным летом. Годовые амплитуды над

океаном и побережьями полярных морей составляют 25-40° С, а на суше

превышают 65° С. Максимум температуры наблюдается в августе, минимум - в

Рассмотренные типы годового хода температуры воздуха выявляются из

многолетних данных и представляют собой правильные периодические колебания.

В отдельные годы под влиянием вторжений теплых и холодных масс возникают

отклонения от приведенных типов.

14. Хар-ка влажности воздуха.

Влажность воздуха, содержание в воздухе водяного пара; одна из наиболее существенных характеристик погоды и климата. В. в. имеет большое значение при некоторых технологических процессах, лечении ряда болезней, хранении произведений искусства, книг и т.д.

Характеристиками В. в. служат: 1) упругость (или парциальное давление) е водяного пара, выражаемая в н/м 2 (в мм рт. ст. или в мб ), 2) абсолютная влажность а - количество водяного пара в г/м 3 ; 3) удельная влажность q - количество водяного пара в г на кг влажного воздуха; 4) отношение смеси w , определяемое количеством водяного пара в г на кг сухого воздуха; 5) относительная влажность r - отношение упругости е водяного пара, содержащегося в воздухе, к максимальной упругости Е водяного пара, насыщающего пространство над плоской поверхностью чистой воды (упругости насыщения) при данной температуре, выраженное в %; 6) дефицит влажности d - разность между максимальной и фактической упругостью водяного пара при данной температуре и давлении; 7) точка росы τ - температура, которую примет воздух, если охладить его изобарически (при постоянном давлении) до состояния насыщения находящегося в нём водяного пара.

В. в. земной атмосферы колеблется в широких пределах. Так, у земной поверхности содержание водяного пара в воздухе составляет в среднем от 0,2% по объёму в высоких широтах до 2,5% в тропиках. Соответственно упругость пара е в полярных широтах зимой меньше 1 мб (иногда лишь сотые доли мб ) и летом ниже 5 мб ; в тропиках же она возрастает до 30 мб , а иногда и больше. В субтропических пустынях е понижена до 5-10 мб (1 мб = 10 2 ·н/м 2). Относительная влажность r очень высока в экваториальной зоне (среднегодовая до 85% и более), а также в полярных широтах и зимой внутри материков средних широт - здесь за счёт низкой температуры воздуха. Летом высокой относительной влажностью характеризуются муссонные районы (Индия - 75-80%). Низкие значения r наблюдаются в субтропических и тропических пустынях и зимой в муссонных районах (до 50% и ниже). С высотой r , а и q быстро убывают. На высоте 1,5-2 км упругость пара в среднем вдвое меньше, чем у земной поверхности. На тропосферу (нижние 10-15 км ) приходится 99% водяного пара атмосферы. В среднем над каждым м 2 земной поверхности в воздухе содержится около 28,5 кг водяного пара.

Суточный ход упругости пара над морем и в приморских областях параллелен суточному ходу температуры воздуха: влагосодержание растет днём с возрастанием испарения. Таков же суточный ход е в центральных районах материков в холодное время года. Более сложный суточный ход с двумя максимумами - утром и вечером - наблюдается в глубине материков летом. Суточный ход относительной влажности r обратен суточному ходу температуры: днём с возрастанием температуры и, следовательно, с ростом упругости насыщения Е относительная влажность убывает. Годовой ход упругости пара параллелен годовому ходу температуры воздуха; относительная влажность меняется в годовом ходе обратно температуре. В. в. измеряется гигрометрами и психрометрами .

15. Испаре́ние - физический процесс перехода вещества из жидкого состояния в газообразное (пар) с поверхности жидкости. Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое).

Процесс испарения зависит от интенсивности теплового движения молекул: чем быстрее движутся молекулы, тем быстрее происходит испарение. Кроме того, немаловажными факторами, влияющими на процесс испарения, являются скорость внешней (по отношению к веществу) диффузии, а также свойства самого вещества. Проще говоря, при ветре испарение происходит гораздо быстрее. Что же касается свойств вещества, то, к примеру, спирт испаряется гораздо быстрее воды. Важным фактором является также площадь поверхности жидкости, с которой происходит испарение: из узкого графина оно будет происходить медленнее, чем из широкой тарелки.

Испаряемость - максимально возможное испарение при данных метеорологических условиях с достаточно увлажненной подстилающей поверхности, то есть в условиях неограниченного запаса влаги. Испаряемость выражается в миллиметрах слоя испарившейся воды и сильно отличается от фактического испарения, особенно в пустыне, где испарение близко к нулю, а испаряемость - 2000 мм в год и более.

16.Конденсация и сублимация. Конденсация состоит в изменении формы воды из ее газообразного состояния (водяной пар) в жидкую воду или кристаллы льда. Конденсация в основном происходит в атмосфере, когда теплый воздух поднимается, остывает и теряет способность содержать в себе водяной пар (состояние насыщения). В результате, избыточный водяной пар конденсируется в форме капельных облаков. Восходящее движение, которое образует облака, может быть вызвано конвекцией в неустойчиво стратифицированном воздухе, конвергенцией, ассоциируемой с циклонами, поднятием воздуха фронтами и поднятием над возвышенностями топографии, такими как горы.

Сублимация - образование ледяных кристаллов (иней) сразу из водяных паров без перехода их в воду или быстром их охлаждении ниже 0°С в то время, когда температура воздуха еще держится выше этого радиационного охлаждения, что случается в тихие ясные ночи в холодную часть года.

Роса́ - вид атмосферных осадков, образующихся на поверхности земли, растениях, предметах, крышах зданий, автомобилях и других предметах.

Из-за охлаждения воздуха водяной пар конденсируется на объектах вблизи земли и превращается в капли воды. Это происходит обычно ночью. В пустынных регионах роса является важным источником влаги для растительности. Достаточно сильное охлаждение нижних слоёв воздуха происходит, когда после заката солнца поверхность земли быстро охлаждается посредством теплового излучения. Благоприятными условиями для этого являются чистое небо и покрытие поверхности, легко отдающее тепло, например травяное. Особенно сильное образование росы происходит в тропических регионах, где воздух в приземном слое содержит много водяного пара и благодаря интенсивному ночному тепловому излучению земли существенно охлаждается. При отрицательных температурах образуется иней.

Температура воздуха ниже которой выпадает роса, называется точкой росы.

И́ней - вид атмосферных осадков, представляющих собой тонкий слой ледяных кристаллов, образующийся из водяного пара атмосферы. Часто сопровождается туманом.Так же, как роса, образуется вследствие охлаждения поверхности до отрицательных температур, более низких, чем температура воздуха, и десублимации водяного пара на поверхности, охладившейся ниже 0°С. По форме частички инея напоминают снежинки, но отличаются от них меньшей правильностью, так как зарождаются в менее равновесных условиях, на поверхности каких-то предметов.

Изморозь - вид атмосферных осадков.

Изморозь представляет собой отложения льда на тонких и длинных предметах (ветвях деревьев, проводах) при тумане.

Почва – компонент климатической системы, являющийся наиболее активным аккумулятором солнечного тепла, поступающего на поверхность земли.

Суточный ход температуры подстилающей поверхности имеет один максимум и один минимум. Минимум наступает около восхода солнца, максимум – в послеполуденные часы. Фаза суточного хода и его суточная амплитуда зависят от времени года, состояния подстилающей поверхности, количества и осадков, а также, от местоположения станций, типа почвы и ее механического состава.

По механическому составу почвы делятся на песчаные, супесчаные и суглинистые, различающиеся между собой по теплоемкости, температуропроводности и генетическим свойствам (в частности, по цвету). Темные почвы поглощают больше солнечной радиации и, следовательно, сильнее прогреваются, чем светлые. Песчаные и супесчаные почвы, характеризующиеся меньшей , теплее суглинистых.

В годовом ходе температуры подстилающей поверхности прослеживается простая периодичность с минимумом в зимнее время и максимумом летом. На большей части территории России наиболее высокая температура почвы наблюдается в июле, на Дальнем Востоке в прибрежной полосе Охотского моря, на и – в июле – августе, на юге Приморского края – в августе.

Максимальные температуры подстилающей поверхности в течение большей части года характеризуют экстремальное термическое состояние почвы, и лишь для самых холодных месяцев – поверхности .

Условиями погоды, благоприятными для достижения подстилающей поверхностью максимальных температур, являются: малооблачная погода, когда максимален приток солнечной радиации; малые скорости ветра или штиль, поскольку повышение скорости ветра способствует увеличению испарения влаги из почвы; малое количество осадков, так как сухая почва характеризуется меньшей тепло- и температуропроводностью. Кроме того, в сухой почве меньше затраты тепла на испарение. Таким образом, абсолютные максимумы температуры обычно отмечаются в наиболее ясные солнечные дни на сухой почве и, обычно, в послеполуденные часы.

Географическое распределение средних из абсолютных годовых максимумов температуры подстилающей поверхности сходно с распределением изогеотерм средних месячных температур поверхности почвы в летние месяцы. Изогеотермы имеют в основном широтное направление. Влияние морей на температуру поверхности почвы проявляется в том, что на западном побережье Японского и , на Сахалине и Камчатке широтное направление изогеотерм нарушается и становится близким к меридиональному (повторяет очертания береговой линии). На Европейской части России значения среднего из абсолютных годовых максимумов температуры подстилающей поверхности изменяются от 30–35°С на побережье северных морей до 60–62°С на юге Ростовской области, в Краснодарском и Ставропольском краях, в Республике Калмыкия и Республике Дагестан. В районе средние из абсолютных годовых максимумов температуры поверхности почвы на 3–5°С ниже, чем в близлежащих равнинных территориях, что связано с влиянием возвышенностей на увеличение осадков в данном районе и увлажнение почвы. Равнинные территории, закрытые возвышенностями от преобладающих ветров, отличаются пониженным количеством осадков и меньшими скоростями ветра, а, следовательно, и повышенными значениями экстремальных температур поверхности почвы.

Наиболее быстрый рост экстремальных температур с севера на юг происходит в зоне перехода от лесной и зон к зоне , что связано с уменьшением осадков в степной зоне и с изменением состава почв. На юге при общем низком уровне содержания влаги в почве одним и тем же изменениям влажности почвы соответствуют более значительные различия в температуре почв, отличающихся между собой по механическому составу.

Так же резко происходит уменьшение средних из абсолютных годовых максимумов температуры подстилающей поверхности с юга на север в северных районах Европейской части России, при переходе от лесной зоны к зонам и тундры – районам избыточного увлажнения. Северные районы Европейской части России, благодаря активной циклонической деятельности, кроме всего прочего, отличаются от южных районов повышенным количеством облачности, что резко снижает приход солнечной радиации к земной поверхности.

На Азиатской части России наиболее низкие из средних абсолютных максимумов имеют место на островах и севере (12–19°С). По мере продвижения к югу происходит увеличение экстремальных температур, причем на севере Европейской и Азиатской частей России это увеличение происходит более резко, чем на остальной территории. В районах с минимальным количеством осадков (например, районы междуречья Лены и Алдана) выделяются очаги повышенных значений экстремальных температур. Так как районы отличаются очень сложным , то экстремальные температуры поверхности почвы для станций, находящихся в различных формах рельефа (горные районы, котловины, низменности, долины крупных сибирских рек), сильно отличаются. Наибольших значений средние из абсолютных годовых максимумов температуры подстилающей поверхности достигают на юге Азиатской части России (кроме прибрежных районов). На юге Приморского края средние из абсолютных годовых максимумов ниже чем в континентальных районах, расположенных на той же широте. Здесь их значения достигают 55–59°С.

Минимальные температуры подстилающей поверхности наблюдаются также при вполне определенных условиях: в наиболее холодные ночи, в часы близкие к восходу солнца, при антициклональном режиме погоды, когда малая облачность благоприятствует максимальному эффективному излучению.

Распределение изогеотерм средних из абсолютных годовых минимумов температуры подстилающей поверхности аналогично распределению изотерм минимальных температур воздуха. На большей части территории России, кроме южных и северных районов, изогеотермы средних из абсолютных годовых минимумов температуры подстилающей поверхности принимают меридиональную направленность (убывают с запада на восток). На Европейской части России средние из абсолютных годовых минимумов температуры подстилающей поверхности изменяются от – 25°С в западных и южных районах до –40…–45°С в восточных и, особенно, северо-восточных районах (Тиманский кряж и Большеземельская тундра). Самые высокие значения средних из абсолютных годовых минимумов температуры (–16…–17°С) имеют место на Черноморском побережье. На большей части Азиатской части России средние из абсолютных годовых минимумов варьируют в пределах –45…–55°С. Столь незначительное и достаточно равномерное распределение температуры на огромной территории связано с однотипностью условий образования минимальных температур в районах, подверженных влиянию сибирского .

В районах Восточной Сибири со сложным рельефом, особенно в Республике Саха (Якутия), наряду с радиационными факторами, существенное влияние на уменьшение минимальных температур оказывают особенности рельефа. Здесь в сложных условиях горной страны во впадинах и котловинах создаются особенно благоприятные условия для выхолаживания подстилающей поверхности. В Республике Саха (Якутия) имеют место наиболее низкие значения средних из абсолютных годовых минимумов температуры подстилающей поверхности на территории России (до –57…–60°С).

На побережье арктических морей, в связи с развитием здесь активной зимней циклонической деятельности, минимальные температуры выше, чем во внутренних районах. Изогеотермы имеют почти широтное направление, и понижение средних из абсолютных годовых минимумов с севера на юг происходит довольно быстро.

На побережье изогеотермы повторяют очертания берегов. Влияние Алеутского минимума проявляется в повышении средних из абсолютных годовых минимумов в прибрежной зоне по сравнению с внутренними районами, особенно на южном побережье Приморского края и на Сахалине. Средние из абсолютных годовых минимумов составляют здесь –25…–30°С.

От величины отрицательных температур воздуха в холодный период года зависит промерзание почвы. Важнейшим фактором, препятствующим промерзанию почвы, является наличие снежного покрова. Такие его характеристики, как время образования, мощность, продолжительность залегания определяют глубину промерзания почвы. Позднее установление снежного покрова способствует большему промерзанию почвы, так как в первую половину зимы интенсивность промерзания почвы наибольшая и, наоборот, раннее установление снежного покрова препятствует значительному промерзанию почвы. Влияние толщины снежного покрова наиболее сильно проявляется в районах с низкой температурой воздуха.

При одних и тех же глубина промерзания зависит от типа почвы, ее механического состава и влажности.

Например, в северных районах Западной Сибири при низкой и мощном снежном покрове глубина промерзания почвы меньше, чем в более южных и теплых районах с малым . Своеобразная картина имеет место в районах с неустойчивым снежным покровом (южные районы Европейской части России), где он может способствовать увеличению глубины промерзания почвы. Это связано с тем, что при частой смене морозов и оттепелей на поверхности тонкого снежного покрова образуется ледяная корка, коэффициент теплопроводности которой в несколько раз больше теплопроводности снега и воды. Почва при наличии такой корки значительно быстрее охлаждается и промерзает. Уменьшению глубины промерзания почвы способствует наличие растительного покрова, так как он задерживает и накапливает снег.

Статьи по теме: